
NSF Compiler Workshop
September 5, 2001

Jack Davidson
Department of Computer

Science
University of Virginia

Two research opportunities

• Compilation for high-performance
embedded systems

• Compilation for heterogeneous,
networked computers-Internet
computing

Compilation for Embedded
Systems

• Why is this important?
– Embedded systems are key building

blocks of vital national infrastructure
– Embedded processors are key

components in a wide array of
consumer devices

Compilation for Embedded
Systems

• What’s the problem?
– Mainframe/desktop compilation

paradigm is inadequate for embedded
systems

• Result
– Embedded software is still written in

assembly language
• Higher development and maintenance costs
• Slower time to market
• Hinders innovation

Compilation for Embedded
Systems

• Why is compilation for embedded
systems hard(er)?
– Many processor variants each with

special features
– Cross-cutting constraints of speed,

power, and size
– Very performance and cost sensitive
– Custom and semi-custom processors

Compilation for Networked
Systems

• Why is this important?
– Duh!!
– Internet computing
– Ubiquitious computing (clusters, motes,

swarms, hives, herds)

Compilation for Networked
Systems

• What’s the problem?
– Mainframe/desktop compilation

paradigm is inadequate for networked
systems

• Result
– The potential of networked systems has

not been fully realized

Compilation for Networked
Systems

• Why is compilation for networked
systems hard(er)?
– Heterogeneous platforms
– Dynamic environment (changing QoS

and resources)
– Code is injected dynamically from

different sources
– Often working at the binary level
– Continuous operation

Meeting these challenges

• Move from static to more dynamic
compilation approaches

Meeting these challenges

• Embedded systems: new compilation
framework
- Adaptive compilation-compiler

configured at compile-time for
application and target

- Different granularities of compilation
- New optimization algorithms

VISTA

• Framework for building reconfigurable,
adaptive compilers
– Optimization backplane for compile-time

flexibility
– Language for compile-time configuration of the

backplane
– Constraint language for specifying code

requirements
– Interactive system for viewing and controlling

and understanding optimizer actions
– Varying granularity of optimization (program,

function, loop, basic block(s))

Meeting these challenges

• Networked computing: software dynamic
translation (SDT) (alteration of a running
program to achieve some objective)
– Improve performance (Dynamo)
– Overcome economic barriers to hardware

innovation (Transmeta)
– Apply application-specific ISA improvements
– Adapt to changes (power, QoS, resource

availability)
– Improve security and robustness of code

Strata: Retargetable SDT
Framework

• Base VM implements
a simple SDT
providing common
services

• Programmer
implements new SDTs
by customizing the
VM

• VM is customized by
overriding functions
in the target interface

• Currently targeted to
SPARC and MIPS.
ARM and X86 next

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

Strata Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

Research challenges
(Partial)

• Adaptive/reconfigurable compilation
– New optimization approaches/algorithms
– Strategies for automatically configuring the

compiler
– Better MDs

• Software dynamic translation
– Innovative applications of SDT (security, fault

tolerance, correctness, code compression)
– Reducing SDT overhead
– Performance analysis and use
– Hardware support for SDT
– Better binary-level tools

